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Introduction

Introduction

– Today we will begin our introduction to statistics/statistical inference.

– Usually in practice, we observe data first without knowing the true
distribution. Then the question of interest becomes: given the observed data,
what can we say about the underlying population?

– To do that we will first learn about estimators and desirable properties of
estimators.

– We will also learn about unbiased estimators, robust estimators and minimum
variance unbiased estimators.
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Point Estimation

Point Estimates

Statisticians provide two things:

a point estimate of some quantity of interest, and

a statement of the uncertainty in that estimate.

Usually, other disciplines only provide the point estimate.

A parameter is some property of a distribution (or density function), such as the
mean, median, standard deviation, and so forth.

A point estimate for a parameter is some statistic h(X1, . . . ,Xn) which, when
evaluated for a random sample, gives a sensible approximation to the parameter.
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Point Estimation

Desirable Properties of Point Estimates

The Central Limit Theorem indicates one of many approaches. If the parameter
of interest is the population mean µ, then the statistic h(X1, . . . ,Xn) = X̄
provides a sensible estimate of µ.

In particular, we know the uncertainty in that estimate: σ/
√
n.

In fact, the law of large numbers suggests looking at averages as estimators of
expectations since averages (and sums) converge to the respective expectations.

There are several desirable properties one can want from a point estimate:

unbiasedness

minimum variance (i.e, minimum uncertainty)

minimum mean squared error.

We discuss these in the context of several estimation strategies.
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Point Estimation

Common Examples

Besides the mean, other point estimates for common parameters are:

the sample proportion X/n for the population (or binomial) proportion p.

the sample variance,

σ̂2 =
1

n− 1

n

∑
i=1

(Xi − X̄ )2

for the population variance.

the average squared deviation,

s2 =
1

n

n

∑
i=1

(Xi − X̄ )2

for the population variance.

the 10% trimmed sample mean for the population mean; this is the
average of the sample after removing the largest 5% of the values and the
smallest 5% of the values.
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Unbiasedness

Unbiased Estimates

Notice that a point estimator has to be random since it is a function of a
random sample from some distribution, but the true parameter itself is constant.

A point estimate θ̂ = h(X1, . . . ,Xn) is said to be an unbiased estimator θ for a
population parameter θ if IE[θ̂] = θ.

The bias in a point estimate is IE[θ̂]− θ = bias(θ̂). For unbiased estimates, this
is clearly zero.

The mean squared error (MSE) of a point estimate is

E[θ̂ − θ]2 = V[θ̂] + [bias(θ̂)]2.

The MSE has many attractive features. In particular, it is sometimes possible to
trade-off a small bias for a large reduction in variance, and this leads to better
accuracy.
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Unbiasedness

Examples

If X has the Bin(n, p) distribution, then the sample proportion X/n is an
unbiased estimate for the parameter p. To see that, notice that

IE[X/n] =
1

n
IE[X ] =

1

n
np = p.

The sample mean X̄ of a random sample is unbiased for the population mean
µ. We know this from the properties of linear combinations:

IE[X̄ ] = IE[
1

n

n

∑
i=1

Xi ] =
1

n

n

∑
i=1

IE[Xi ] =
1

n
(nµ) = µ.

In this case we also know the variance of the estimator. Recall that

V[X̄ ] =

(
1

n

)2 n

∑
i=1

σ2 =

(
1

n

)2

(nσ2) =
σ2

n
.
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Unbiasedness

Examples

Example 1: Let X be uniformly distributed on the interval [0, θ] where
f (x) = 1/θ so that θ is the unknown parameter. You have a random sample
X1, . . .Xn and use the statistic θ̂1 = Z = max{X1, . . . ,Xn} as an estimate of θ.
Then

F (x) = P[X ≤ x ] =
∫ x

0
1/θ dt = x/θ.

and from the lecture 8, G (z) = P[Z ≤ z ] = P[max{X1, . . . ,Xn} ≤ z ], and

P[max{X1, . . . ,Xn} ≤ z ] = P[X1 ≤ z and · · · and Xn ≤ z ]

=
n

∏
i=1

P[Xi ≤ z ]

=
n

∏
i=1

z

θ
=
( z

θ

)n
.
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Unbiasedness

Examples

So the distribution of the sample maximum is G (z) = (z/θ)n for 0 ≤ z ≤ θ
and thus the probability density function of the maximum is
g(z) = n(1/θ)nzn−1 on 0 ≤ z ≤ θ.

Since we know the density, we can find the expected value of Z , where Z is the
sample maximum and check if it is unbiased:

IE[θ̂1] = IE[Z ] =
∫ θ

0
z ∗ n

θn
zn−1 dz =

n

θn
1

n+ 1
zn+1

∣∣∣θ
0

=
n

n+ 1
θ.

So the estimator θ̂1 of θ has a small bias:
n

n+ 1
θ − θ = − θ

n+ 1
.

One can make θ̂1 into an unbiased estimator by using the new estimator

θ̂2 =
(n+ 1)θ̂1

n
=

(n+ 1)

n
max{X1, . . . ,Xn}.
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Minimum Variance Unbiased Estimators

Minimum Variance Unbiased Estimators

Usually, a first requirement for a good estimator of a parameter is that it be
unbiased. When there are several unbiased estimators, one should use the one
that has smallest variance.

This is not the only way to frame the problem of selecting an estimator. For
example, one might want the estimator which:

minimizes the the mean squared error,

has the largest probability of being within some fixed distance from the
true value,

is unbiased and minimizes something more practical than the variance.
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Minimum Variance Unbiased Estimators

Examples

Consider again the case of a random sample from the Unif(0, θ) distribution.

Then for any X ∼ Unif(0, θ), IE[X ] =
θ

2
. Clearly, IE[X̄ ] =

θ

2
so θ̂3 = 2X̄ is an

unbiased estimator of θ.

We now have two candidate estimators:

θ̂2 =
(n+ 1)

n
max{X1, . . . ,Xn} and θ̂3 = 2X̄ .

Which has the smaller variance?

Since θ̂3 is a linear combination, its variance is
4σ2

n
where σ2 is the variance of

the Unif(0, θ) distribution. You can check that the variance of the Unif(0, θ)
distribution is θ2/12. Thus

V[θ̂3] =
θ2

3n
.
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Minimum Variance Unbiased Estimators

Examples

To find the variance of θ̂2 we first find

IE[Z2] =
∫ θ

0
z2g(z) dz =

∫ θ

0
z2 ∗ n

θn
zn−1 dz =

n

n+ 2
θ2.

Since V[Z ] = IE[Z2]− (IE[Z ])2, we have

V[Z ] =
n

n+ 2
θ2 −

[
n

n+ 1
θ

]2
=

[
n

(n+ 2)(n+ 1)2

]
θ2.

Since θ̂2 =
(n+ 1)

n
Z , then

V[θ̂2] =

(
n+ 1

n

)2 [ n

(n+ 2)(n+ 1)2

]
θ2 =

1

n(n+ 2)
θ2.

A little algebra shows that n(n+ 2) > 3n for all n > 1, so θ̂2 is better than θ̂3.
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Robust Estimators

Robust Estimators

Previously, we claimed to like estimators that are unbiased, have minimum
variance, and/or have minimum mean squared error. Typically, one cannot
achieve all of these properties with the same estimator.

An estimator may have good properties for one distribution, but not for
another. We saw that n

n−1Z , for Z the sample maximum, was excellent in
estimating θ for a Unif(0, θ) distribution. But it would not be excellent for
estimating θ every pdf supported on [0, θ].

A robust estimator is one that works well across many families of distributions.
In particular, it works well when there may be outliers in the data.
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Robust Estimators

Robust Estimators

The 10% trimmed mean is a robust estimator of the population mean. It
discards the 5% largest and 5% smallest observations, and averages the rest.
Obviously, one could trim by some fraction other than 10%, but this is a
commonly-used value.

Surveyors distinguish errors from blunders. Errors are measurement jitter
attributable to chance effects, and are approximately Gaussian. Blunders occur
when the guy with the theodolite is standing on the wrong hill.

A trimmed mean throws out the blunders and averages the good data. If all the
data are good, one has lost some sample size. But in exchange, you are
protected from the corrosive effect of outliers.
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Robust Estimators

Recap

Today we covered:

Point Estimation

Unbiasedness and Minimum Variance Unbiased Estimators

Robust Estimators
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