
STA 111 (Summer Session I)

STA 111 (Summer Session I)
Lecture Twelve – Bayesian Inference

D.S. Sections 7.2, 7.3 & 7.4

Instructor: Olanrewaju (Michael) Akande

Department of Statistical Science, Duke University

June 6, 2016

Instructor: Olanrewaju (Michael) Akande (Department of Statistical Science, Duke University)STA 111 (Summer Session I) June 6, 2016 1 / 21



STA 111 (Summer Session I)

Outline

Outline

– Questions from Last Lecture

– Bayesian Inference

– Conjugacy

– Bayesian Estimators

– Recap

Instructor: Olanrewaju (Michael) Akande (Department of Statistical Science, Duke University)STA 111 (Summer Session I) June 6, 2016 2 / 21



STA 111 (Summer Session I)

Introduction

Introduction

– So far we have talked about point estimators, desirable properties of point
estimators and one way to derive point estimators – the maximum likelihood
method.

– In statistics, there are two major paradigms, the Bayesian paradigm and the
classical or frequentist paradigm and our discussions on statistics so far fall
under the classical paradigm.

– The objective of this lecture is to simply introduce you to the Bayesian way of
thinking about statistics.

– Lastly, we will see how to derive Bayesian estimators.
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Bayesian Inference

Bayesian Inference vs. Classical Inference

In the previous lecture we discussed maximum likelihood inference. A maximum
likelihood estimate is the parameter value which has the greatest chance of
generating the data that were observed (assuming that the analyst has correctly
specified the probability model for the data, say exponential or normal or
uniform).

This is in line with the frequentist paradigm, where we treat parameters as
unknown constants and try to estimate them (use the observed data to take an
educated guess about what the population parameter should be). Under the
Bayesian paradigm, parameters are treated as random variables, and we rely o
Bayes’ rule for inference.

Here treating the parameters as random variables mean we need to find the
distribution over all possible parameter values. The distribution of the
parameter given the observed data is called the posterior distribution. Again, we
have to assume that the probability model has been correctly specified.
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Bayesian Inference

Interpretation

One key distinction between the methods is that a Bayesian uses probability to
describe their personal uncertainty about the world, whereas a frequentist does
not.

For example, a lawyer might want to know whether a client is guilty of murder.
If she were Bayesian, she could say something like “Given the evidence, I
think the probability that the client is guilty is at least 0.8.”

A frequentist lawyer on the other hand first assumes that either the client did or
didn’t – we just don’t know which. The frequentist lawyer makes a different
statement: “If the client is innocent, then the probability of having so
much evidence against him/her is at most 0.05.”

There are important philosophical and mathematical distinctions between these
perspectives.
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Bayesian Inference

History and Background

Bayesian inference was invented by the Reverend Thomas Bayes (remember
Bayes’ rule?), and published posthumously in 1763. The difficulty in calculating
most integrals kept it from being widely used until 1990 when a new algorithm
was invented (by Alan Gelfand of the Duke statistics department).

Before the data are collected, the Bayesian has a prior opinion about the value
of a parameter θ. This prior expresses her uncertainty, and provides a prior
density on the parameter, or π(θ).

Then the Bayesian observes data x1, . . . , xn where the data are a random
sample from some specified probability model with density f (x ; θ).

Now the Bayesian sees how the data has changed her prior opinion about θ and
uses Bayes’ rule to find his/her posterior density π∗(θ | x1, . . . , xn).
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Bayesian Inference

Formula

Recall Bayes’ Rule: For a finite partition A1, . . . ,An and an event B,

P[Ai |B ] =
P[B |Ai ]×P[Ai ]

n

∑
j=1

P[B |Aj ]×P[Aj ]
.

In the context of Bayesian inference, B is the observed data, the Ai ’s are all
possible parameter values. However, since the possible parameter values are
usually continuous, we need to rewrite Bayes’ Rule in the language of densities:

π∗(θ | x1, . . . , xn) =
f (x1, . . . , xn | θ)π(θ)

∞∫
−∞

f (x1, . . . , xn | θ)π(θ) dθ

.

Here π(θ) is one’s belief about the parameter before seeing the data, and
π∗(θ | x1, . . . , xn) is one’s belief after seeing the data.

Note that the numerator contains the likelihood function and the denominator is
just some constant in terms of the xi ’s, since we integrate θ out of the picture.
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Conjugacy

Conjugate Distributions

As mentioned, it is usually hard to solve the integrals that arise in Bayesian
statistics. Specifically, it is difficult to evaluate the integral in the denominator
of the density version of Bayes’ Rule.

But there are a handful of exceptions (called conjugate families or
distributions), and fortunately these cover some important and practical
situations. These entail three pairs of distributions:

– the Normal-Normal case

– the Beta-Binomial case

– the Gamma-Poisson case.

In each pair the first distribution describes the statistician’s prior belief about θ,
and the second distribution is the model for how the data are generated for a
specific value of θ.
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Conjugacy

Conjugate Distributions

In the Normal-Normal case, one thinks the data are normally distributed with
some unknown mean µ and known variance σ2. You don’t know µ, but your
prior belief is that µ is normally distributed with a mean ν and variance τ2.
Then you observe data x1, . . . , xn and apply Bayes Rule to find the posterior
distribution of µ. It turns out that the posterior density π∗(µ|x1, . . . , xn) is

N

(
νσ2 + nx̄τ2

σ2 + nτ2
,

σ2τ2

σ2 + nτ2

)
You could prove all this using the density version of Bayes Rule.

If you attempt this, a good trick is to treat the denominator as some constant
c . On multiplying the numerator terms, you can recognize the product as
being, up to a constant, the density function of a normal distribution. Then just
take c to be whatever is needed to ensure the density integrates to 1. We will
derive the Beta-Binomial case to see how the math works out.
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Conjugacy

Examples

Example 1: Suppose you believe that chest measurements in inches are
normally distributed with unknown mean µ and variance σ2 = 4.

You do not know µ, but before you begin, you believe it is probably near 41,
and you are pretty confident (say 95% probability) that the mean is within
plus/minus 6 inches of 41.

If you express this uncertainty as a normal distribution, then ν = 41 and τ2 = 9
(since two standard deviations on each side is 6 inches, then one sd is 3 inches,
and so the variance is 9).

Suppose you observe x̄ = 39.85 inches and n = 5732. Thus Bayes’ Rule implies
you should now believe that the true average chest circumference is normally
distributed with mean

ν∗ =
νσ2 + nx̄τ2

σ2 + nτ2
=

(41× 4) + (5732× 39.85× 9)

4 + (5732× 9)
= 39.85009.

Note that the posterior mean is very close to the sample mean.

Instructor: Olanrewaju (Michael) Akande (Department of Statistical Science, Duke University)STA 111 (Summer Session I) June 6, 2016 10 / 21



STA 111 (Summer Session I)

Conjugacy

Examples

Similarly, your uncertainty about the location of µ has gotten very much
smaller. The variance of your posterior distribution is

τ∗2 =
σ2τ2

σ2 + nτ2
=

4 ∗ 9

4 + 5732 ∗ 9
= 0.0007.

The large sample size has dramatically reduced your uncertainty about the
average chest circumference.

If someone asks you what you think the mean chest circumference is, you can
answer 39.85009± 2

√
0.0007 (with 95% probability).

Note that the posterior mean is the weighted average of the prior mean ν and
the sample mean x̄ . One can re-write the formula as:

ν∗ =
σ2

σ2 + nτ2
ν +

nτ2

σ2 + nτ2
x̄ .

So when n is large, most of the weight goes on x̄ , the data. But when n is
small, most of the weight goes on your prior belief ν.
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Conjugacy

Conjugate Distributions

In the Beta-Binomial case, you think that your data come from a binomial
distribution with an unknown probability of success θ.

You do not know the value of θ, but you have a prior distribution on it.
Specifically, your prior is a beta distribution.

The beta family has two parameters, α > 0 and β > 0, and the beta density on
θ is

f (θ; α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 for 0 ≤ θ ≤ 1.

where Γ(n) = (n− 1)!.

One could pick some other distribution with support on [0, 1], if it expressed
your personal beliefs about θ. But the beta family is flexible (conjugate to the
Binomial likelihood) and it makes the Bayesian mathematics easy.
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Conjugacy

Conjugate Distributions
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These plots show the densities of the beta distribution for different choices of α
and β. Which choices would make sense in a coin tossing context?
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Conjugacy

Conjugate Distributions

Suppose your prior on θ is Beta(α, β). And your data are binomial, so the

likelihood function for x successes in n trials is

(
n
x

)
θx (1− θ)n−x . Then

Bayes’ Rule shows that the posterior on θ is Beta(α + x , β + n− x).

π∗(θ | x) =
f (x | θ)π(θ)

∞∫
−∞

f (x | θ)π(θ) dθ

=

[(
n
x

)
θx (1− θ)n−x

]
×
[

Γ(α+β)
Γ(α)Γ(β)

θα−1(1− θ)β−1
]

1∫
0

[(
n
x

)
θx (1− θ)n−x

]
×
[

Γ(α+β)
Γ(α)Γ(β)

θα−1(1− θ)β−1
]
dθ

= . . . some algebra . . .

=
Γ(n+ α + β)

Γ(x + α)Γ(n− x + β)
θx+α−1(1− θ)n−x+β−1

which we recognize as the Beta(α + x , β + n− x) density.
Instructor: Olanrewaju (Michael) Akande (Department of Statistical Science, Duke University)STA 111 (Summer Session I) June 6, 2016 14 / 21



STA 111 (Summer Session I)

Conjugacy

Examples

Example 2: Suppose you want to find the Bayesian estimate of the probability θ
that a coin comes up Heads. Before you see the data, you express your
uncertainty about θ as a beta distribution with α = β = 2. Then you observe
10 tosses, of which only 1 was Heads. Now the posterior density π∗(θ | x , n) is
Beta(3, 11).

The mean of Beta(α, β) is α/(α + β). So before you saw the data, you thought
the mean for θ was 2/(2+2) = 0.5. After seeing the data, you believe it is
3/(3+11) = 0.214.

The variance of Beta(α, β) is
αβ

(α+β)2(α+β+1)
. So before you saw data, your

uncertainty about θ (i.e., your standard deviation) was
√

4/[42 ∗ 5] = 0.22.
But after seeing 1 Heads in 10 tosses, your uncertainty is 0.106.

As the number of tosses goes to infinity, your uncertainty goes to zero.
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Conjugacy

Conjugate Distributions

For the Gamma-Poisson case, you believe that the data come from a Poisson
distribution with parameter λ, and your uncertainty about λ is expressed by a
gamma distribution.

The gamma distribution has two parameters, α > 0 and β > 0. Its density
function is

f (x ; α, β) =
βα

Γ(α)
xα−1e−βx .

Using Bayes’ Rule, one can show that if x1, . . . xn are are an observed random
sample from a Po(λ) distribution, and if your prior π(λ) on λ is Gamma(α, β),

then your posterior π∗(λ | x1, . . . xn) is Gamma(α +
n

∑
i=1

xi , β + n).
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Conjugacy

Examples

Example 3 (to be done in class:) Suppose you want to do inference on λ, the
mean number of customers that arrive at a store per hour. Before you observe
data, you believe that λ has a gamma distribution with α = 8, β = 2. If you
observe a total of 50 customers in 10 hours and assume the number of
customers per hour has a Poisson distribution, what is your posterior density on
λ.
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Conjugacy

Examples

Example 4 (to be done in class – D.S. Section 7.3 Exercises, Question 10:)
Suppose that a random sample is to be taken from a normal distribution for
which the value of the mean θ is unknown and the standard deviation is 2, and
the prior distribution of θ is a normal distribution for which the standard
deviation is 1. What is the smallest number of observations that must be
included in the sample in order to reduce the standard deviation of the posterior
distribution of θ to the value 0.1?
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Conjugacy

Examples

Example 5 (to be done in class:) Suppose that income per hour for white collar
jobs in North Carolina has a normal distribution with unknown mean µ and
variance 5. Prior to seeing the data, suppose I believe that µ is at least $25
with 0.4 probability but at most $27 with 0.8 probability. If I observe a sample
mean of $25 from a random sample of 500 workers. What is the posterior
distribution of µ.
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Conjugacy

Bayesian Estimators

The result of a Bayesian inference is a posterior distribution over the entire
parameter space. That distribution completely expresses your belief about the
probabilities for all possible values of the parameter.

Often one needs to have a summary of that belief. Two standard choices are the
mean of the posterior distribution and the median of the posterior distribution.

The posterior mean is your best one-number guess when your penalty for being
wrong is proportional to (θ̂− θ)2, where θ is the parameter of interest. So large
mistakes are heavily penalized.

The posterior median is your best one-number guess when your penalty for
being wrong is proportional to |θ̂ − θ|. Here large mistakes are not so heavily
penalized.
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Conjugacy

Recap

Today we covered:

The difference between Bayesian and frequentist/classical paradigms

Conjugacy

Bayesian Estimators
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