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Introduction

Introduction

– In the last lecture we talked about simple linear regression and least squares
method

– Today we will extend the regression idea to multiple explanatory variables.

– We often come across data that do not necessarily satisfy the normal
distribution or linearity assumptions for the response variable and we will briefly
talk about some common transformations that result in normality (or as least as
close as possible).

Instructor: Olanrewaju (Michael) Akande (Department of Statistical Science, Duke University)STA 111 (Summer Session I) June 22, 2016 3 / 23



STA 111 (Summer Session I)

Multiple Regression

Recap

Recall the simple linear regression assumptions:

1. Each point (xi , yi ) in the scatterplot satisfies:

yi = β0 + β1xi + εi

where the εi have a normal distribution with mean zero and (usually)
unknown standard deviation.

2. The errors εi have nothing to do with one another (independence). A large
error does not tend to be followed by another large error, for example.

3. The xi values are measured without error. (Thus all the error occurs in the
vertical direction.)

These weren’t included in the last class but we also implicitly assume that:

4. The errors εi are independent of the xi ’s.

5. The relationship between yi andxi is linear.
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Multiple Regression

Multiple Regression

In multiple regression, the set-up is still the same except that we now have
more than one explanatory variable. The model is

yi = β0 + β1x1i + β2x2i + · · · βpxpi + εi .

Again, the εi are independent normal random variables with mean 0 and all the
x ’s are measured without error.

In multiple regression, there is more than one explanatory variable. The

model is

Yi = β0 + β1X1i + β2X2i + · · ·βpXpi + ǫi.

Again, the ǫi are independent normal random variables with mean 0.
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Multiple Regression

Multiple Regression

How then should we interpret the coefficients (that is, β0, β1, . . . , βp)?

Recall that for the simple linear regression, β0 is usually the average of y when
x is zero (and it is only meaningful when x can be zero) while for β1, every unit
increase in x corresponds to an increase in y by β1.

The interpretation is quite similar here too except that for any βp, every unit
increase in xp corresponds to an increase in y by βp when all the other x’s
are fixed or held constant.
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Multiple Regression

Variable Selection

In practice, we often have a long list of potential explanatory variables and need
to make a decision on which variables to include.

As an example, the Princeton economist Orley Ashenfelter built a model to
predict the price of wine, along the following lines:

pricei = β0 + β1(avg. rainfall)i + β2(avg. temp.)i +

β3(calcium in soil)i + β4(soil pH)i + εi

This general kind of model is often used by wine speculators.

In building such a model, Ashenfelter considered many possible explanatory
variables. He wanted to include only those that were relevant. If the model
includes irrelevant explanatory variables, then it tends to give poor predictions.

To determine which variables to include and which to remove from his model,
Ashenfelter did hypothesis tests to decide whether each estimated coefficient
was significantly different from zero.
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Multiple Regression

Variable Selection

To make this test, the null and alternative hypotheses are:

H0 : βi = 0 vs. HA : βi 6= 0.

The test statistic takes the form we are used to:

ts =
pe − 0

se
=

β̂i − 0

σ̂βi

where σ̂βi
is the standard error of the estimate β̂i . It is a bit complicated

(remember that we found the variance of β1 in the previous lecture), but can
be found from the all standard statistics packages.

This ts is compared to a t-distribution with n− p − 1 degrees of freedom (we
lose information equivalent to one observation for each parameter we estimate,
and we had to estimate β0, . . . , βp). If n− p − 1 > 30, we can use the z-table.
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Multiple Regression

Examples

Why multiple regression? This follows intuitively from our discussion on
confounders and the following example illustrates the point.

Example 1: In 1979, Harris Trust and Savings Bank was accused of gender
discrimination in starting salaries. In particular, one main question was whether
men in entry-level clerical jobs got higher salaries than women with similar
credentials. Exploratory box plots showed that the claim might be true.

In 1979, Harris Trust and Savings Bank was accused of gender

discrimination in starting salaries. In particular, one main question was

whether men in entry-level clerical jobs got higher salaries than women

with similar credentials.
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Multiple Regression

Examples

Harris Trust and Savings denied that they discriminated. They claimed that
their starting salaries were based on many other factors, such as seniority,
education, age and experience (possible confounders).

To assess that claim, the plaintiffs’ lawyers used multiple regression:

salaryi = β0 + β1(sex)i + β2(seniority)i + β3(age)i + β4(educ)i +

β5(exper)i + εi

Sex was recorded as 1 if the person was female, 0 for males.

Age, seniority, and experience were measured in months. Education was
measured in years (we are treating education as a numeric variable but that’s
not the only way to treat it; let’s ignore that discussion here though).

The legal question was whether the coefficient β1 was significantly less than 0.
If so, then the effect of gender was to lower the starting salary.
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Multiple Regression

Examples

Let’s look at the regression fit by each variable, holding the rest constant.
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Multiple Regression

Examples

These are some of the residual plots. The seniority plot looks pretty

good, there is something at little odd for age at around 400 months (age

33), and the education scatterplot shows the striping associated with

high school and college.

9

These are some of the residual plots, to examine our assumption of
independence between the errors and each covariate. The seniority plot looks
pretty good, there is something at little odd for age at around 400 months (age
33).
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Multiple Regression

Examples

These are more residual plots. Experience may show some patterning.

Gender shows that there is more variance for men than for women.

One residual may be the boss’s son?
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These are more residual plots. Experience may show some patterning. Gender
shows that there is more variance for men than for women. One residual may
be the boss’s son?

Residual plots are really useful in examining our assumption of independence.
They might help us figure out that we are still missing a function of one of the
x ’s if we observe any pattern.
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Multiple Regression

Examples

Back to the question we are interested in answering:

Using the 93 available cases of entry-level clerical workers, a statistical package
found that the estimated model is

salaryi = 6277.9− 767.9(sex)i − 22.6(seniority)i + 0.63(age)i +

92.3(educ)i + 50(exper)i + εi

The output showed that the standard error for the estimate of the coefficient on
sex (i.e., the σ̂β1

) was 128.9.

We observe that the coefficient on sex is negative, which suggests that there
may be discrimination against women. But we still need a significance test to
be sure. We cannot interpret the size of the effect without one. Without a
small p-value (below α = 0.05 for example), Harris Trust and Savings might
argue in court that this result is only due to random chance.
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Multiple Regression

Examples

Because we care about a one-sided alternative hypothesis, the null and
alternative hypotheses are:

H0 : b1 ≥ 0 vs. HA : b1 < 0.

The test statistic is

ts =
b̂1 − 0

se
=
−767.9− 0

128.9
= −5.95.

This is compared to a t-distribution with n− p − 1 = 93− 5− 1 = 87 degrees
of freedom. Since this is off our t-table scale, we use a z-table. The result is
highly significant. Reject the null; there is evidence of discrimination.
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Transformations

We often come across data that are not necessarily normal or even linear and
some transformations can be useful.

Example 2: A biologist wants to predict brain weight from body weight, based
on a sample of 62 mammals. A portion of the data are shown below:

bodywt brainwt log(bodywt) log(brainwt)
arctic fox 3.385 44.5 0.529 1.648
owl monkey 0.48 15.5 -0.318 1.190
cow 465 423 2.667 2.626
grey wolf 36.33 119.5 1.560 2.077
roe deer 14.83 98.2 1.171 1.992
vervet 4.19 58 0.622 1.763
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Transformations
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Transformations

Transformations

The regression equation is

Y = 90.996 + 0.966X

The correlation is 0.9344, but it is heavily influenced by a few outliers (the
Indian and African elephants). The standard deviation of the residuals is
334.721.

A 95% confidence interval on the brainweight of a mammal that weighed 100
kg would be

L,U = 90.996 + 0.966(100)± (334.721)(1.96)

so U = 843.65 and L = −468.46. This isn’t very helpful.
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Transformations

The scatterplot of the brainweight against bodyweight showed the the line was
probably controlled by a few large values. These are sometimes called
influential points.

Even worse, the scatterplot did not resemble the linear trend that supports the
regression assumptions listed before.

In cases like this, one can consider making a transformation of the response
variable or the explanatory variable or both. It is hard to know what
transformation to choose; usually this choice depends upon scientific knowledge
or the judgment of a good statistician.

For this data, consider taking the logarithm (base 10) of the brainweight and
body weight.

The following scatterplot is much better.
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Transformations
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Transformations

Taking the log shows that the influential points are not surprising. The
regression equation is now:

logY = 0.908 + 0.763 logX

The coefficient of determination shows that 91.23% of the variation in log
brain weight is explained by log body weight. Both the intercept and the slope
are highly significant. The estimated standard deviation of ε is 0.317.

Thus a 95% confidence interval on the log brain weight of a 100 kg mammal is

L,U = 0.908 + 0.763(log 100)± (0.317)(1.96)

so U = 3.06 and L = 1.81.

Transforming back to the original scale, U = 103.06 and L = 101.81, which is
more helpful than before.
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Transformations

Making transformations is an art. Here the analysis suggests that

Y = 100.908 ∗ X 0.763 = 8.1 ∗ X 0.763.

So there is a power-law relationship between brain mass and body mass.

Note: We are ignoring a technical issue about additivity of the errors.

Some standard transformations:
function transformation linear form
y = aebx y∗ = ln y y∗ = ln a+ bx
y = axb y∗ = log y , x∗ = log x y∗ = log a+ bx∗

y = a+ b/x x∗ = 1/x y = a+ bx∗
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Recap

Today we learned about extending the regression idea to multiple explanatory
variables.

In the next lecture, we will talk about one specific type of regression known as
analysis of variance (which doesn’t have to be set-up as a regression problem
exactly).
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