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Nonparametric Regression

Recap

Recall that the multiple linear regression model is

yi = β0 + β1xi1 + . . . + βpxip + εi

where IE[εi ] = 0, V[εi ] = σ2, and the εi ’s are independent.

The model is useful because:

it is interpretable—the effect of each explanatory variable is captured by a
single coefficient

theory supports inference and prediction is easy

simple interactions and transformations are easy (how?)

dummy variables allow use of categorical information

computation is fast.
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Nonparametric Regression

Nonparametric Regression

We extended the multiple linear regression model to nonlinear regression, in
which we fit a model of the form:

yi = β0 + β1g1(xi2) + . . . + βpgp(xip) + εi

where the gj ’s are known transformations of the data, such as the log or 1/x ,

and, as before, IE[εi ] = 0, V[εi ] = σ2, and the εi ’s are independent.

This model can be further extended to nonparametric regression, in which case
one does not now the functions g1, . . . , gp but instead must estimate these by
smoothing the data.

In the real applications, the linear regression model is usually only a locally
correct approximation. And it is rare that one has a strong theoretical model
that prescribes specific nonlinear transformations. Thus nonparametric
regression is a practical tool in many cases.
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Multicollinearity

Curse of Dimensionality

Regression becomes much harder as the number of explanatory variables
increases. This is called the Curse of Dimensionality (COD). The term was
coined by Richard Bellman in the context of approximation theory.

The COD applies to all multivariate regressions that do not to impose strong
modeling assumptions—especially the nonparametric regressions, but also those
in which one tests whether a specific variable or transformed variable should be
included in the model.

In terms of the sample size n and dimension p, the COD has three nearly
equivalent descriptions:

For fixed n, as p increases, the data become sparse.

As p increases, the number of possible models explodes.

For large p, most datasets are multicollinear.
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Multicollinearity

Curse of Dimensionality (Cont’d)

To explain the model explosion aspect, suppose we restrict attention to just
linear models of degree 2 or fewer. For p = 1 these are:

IE[Y ] = β0 IE[Y ] = β1x1 IE[Y ] = β2x
2
1

IE[Y ] = β0 + β1x1 IE[Y ] = β0 + β2x
2
1 IE[Y ] = β1x1 + β2x

2
1

IE[Y ] = β0 + β1x1 + β2x
2
1

For p = 2 this set is extended to include expressions with the terms α1x2, α2x
2
2 ,

and γ12x1x2. For general p, combinatorics shows that the number of possible
models is

2
1+2p+

(
p
2

)
− 1.

This increases superexponentially in p, and there is not enough sample to
enable the data to discriminate among these models.
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Multicollinearity

Curse of Dimensionality (Cont’d)

For the multicollinearity issue, we note that multicollinearity occurs when two
or more of the explanatory values are highly correlated. This implies that the
predictive value of the fitted model breaks down quickly as one moves away
from the subspace in which the data concentrate.

We shall agree that multicollinearity occurs whenever the absolute value of the
correlation between two of the explanatory variables exceeds 0.9. But this is a
judgment call, and one can have multicollinearity that arises in more complex
ways.

For large p with finite n, it is almost certain that two explanatory variables will
have high correlation, just by chance.
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Variable Selection

Variable Selection

One wants to select a multiple regression model that only includes useful
variables. Some methods are:

Forward Selection. One starts with no variables in the model, and
sequentially adds the one that best explains the current residuals (or the
raw data, at the initial step). One stops when none of the remaining
variables provide significant explanation.

Backwards Elimination. Start with all the variables in the model, and
sequentially removes the variable that explains the least, until a t-test
shows that no further variables should be removed.

Stepwise Regression. Alternate use of forward selection and backwards
elimination.

None of these is bulletproof.
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Cross-Validation

Cross-Validation

To assess model fit in complex, computer-intensive situations, the ideal strategy
is to hold out a random portion of the data, fit a model to the rest, then use
the fitted model to predict the response values from the values of the
explanatory variables in the hold-out sample.

This allows a straightforward estimate of the error in prediction using
regression. But we usually need to compare fits among many models. If the
same hold-out sample is re-used, then the comparisons are not independent and
(worse) the model selection process will tend to choose a model the overfits the
hold-out sample, causing spurious optimism.

Instructor: Olanrewaju (Michael) Akande (Department of Statistical Science, Duke University)STA 111 (Summer Session I) June 23, 2016 9 / 10



STA 111 (Summer Session I)

Cross-Validation

Cross-Validation (Cont’d)

Cross-validation is a procedure that balances the need to use data to select a
model and the need to use data to assess prediction.

Specifically, v -fold cross-validation is as follows:

randomly divide the sample into v portions;

for i = 1, . . . , v , hold out portion i and fit the model from the rest of the
data;

for i = 1, . . . , v , use the fitted model to predict the hold-out sample;

average the predictive mean squared error (PMSE) over the v different fits.

One repeats these steps (including the random division of the sample!) each
time a new model is assessed.

The choice of v requires judgment. Often v = 10.
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