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Introduction

Introduction

— In the last lecture we learned how to calculate expectation and variance.
— We also learned about the standard normal distribution.
— Today we will go over more examples to help understand expectations.

— We will also continue with our discussions on the standard normal distribution
and extend the discussion to the arbitrary case. We will move on to look at the
normal approximation to the binomial distribution.

— Lastly, we will learn about the generalization of the binomial distribution
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Additional Review

First let's a few more things we previously skipped.

@ Recall that two events A and B are independent if P(AN B) = P(A)P(B).
A and B are said to be “conditionally independent” given a third event C if

IP(AN B|C) = IP(A|C)P(B|C)

@ Let f(x) be the pdf, and F(x) be the cdf of a continuous random variable
X. Then,
dF(x)
f pr—
() = =3,

@ For any random variable, the variance V[X] > 0
Q@ If X and Y are independent random variables, then

V]aX + bY] = a®V[X] 4 b2V[Y]
Turns out we don't need independence here but let's revisit this later!
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Additional Concepts Cont'd

The following are true for any continuous random variable X and constants a
and b:

Q@ P(X <b)=P(X < b)and P(X > a) =P(X > a). This is true because
we assign zero probability to events such as X = b for continuous random
variables, that is P(X = b) =0

Q@ Pla<X<b)=Pla<X<b)=Pla<X<b)=P(a< X < b) for
the same reason as above.

@ Any of the probabilities in (3) above = F(b) — F(a) where F(x) is the cdf
of X.
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Expectation Cont’d

Expectation of a Discrete Random Variable Cont'd

Example 1 (To be done in class): Consider a random variable X which can take
on the values: 1, 2, 3 and 4 and define its probability mass function to be

f(x) = c/x?. Also consider another random variable Y which can take on the
following values: 5, 10, 15, 20 and 25 and define its probability mass function
to be f(y) = ky.

Find: (i) ¢ (i) k (i) E(X) (iv) E(Y) (v) V(X) (Vi)EX-Y)
(vii) E(2X% +3Y +5)
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Expectation Cont’d

Expectation of a Continuous Random Variable

Example 2 (D.S. 4.1.6): An appliance has a maximum lifetime of one year. The
time X until it fails is a random variable whose p.d.f is:

2x for0< x<1
0 otherwise

Let Y = 5X%. Then,

o0 1 231 2
_ _ 2. _ _2
E[X] —/OOX(QX)dX—/O 2x“dx = 3 ’0 3

) 1 6,1
IE[Y] = ]E[5X4] :/ 5X4(2X)dX :/0 10X5dX — ]-OTX . _ g

How did we know it was continuous?
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ST/
Expectation Cont’d

Expectation of a Continuous Random Variable Cont'd

Example 3: Suppose that a random variable X has pdf f(x) = ¢ for some
constant ¢, where 1 < x < 3. Can we find its expected value and variance such
that it doesn't involve ¢? Of course!

Since the pdf must integrate to 1, we know how to find c¢. That is,

3 3 1
1:/CdX:CX’ =3c—c=2c=>c=—-
1 1 2

2,3

1

[

_Z =9

&~ O

3,2 3

3 x X
Then, E[X]= [ Jdx=2%
en, [X] /12dx 2
X 3_277*1_%_4333

E[X2] = / x 7‘
[X°] 1 2 6 11 6 6 6
= V[X] = ]E[Xz] — (]E[X])2 = 4333 —22=0.333
It turns out that this is another well known distribution. A random variable is

said to have a uniform distribution (continous) over its support a < x < b if
f(x) = c for some constant c. This is denoted X ~ Un(a, b).

dx =
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Expectation Cont’d

Properties of Expectation

Now lets review two more interesting properties of expectations.

Q If X1, X5, ..., X, are n random variables such that each expectation is
finite and well-defined, then

E[X1 + Xz + ...+ Xo] = E[X1] + E[Xo] + ... + E[X,]

Q If X1, X5,..., X, are n “independent” random variables such that each
expectation is finite and well-defined, then

E (ﬁ%’) = f{m[xi]

Note that we haven't defined what independence means for random variables.
We will get to that soon. This is just something to have in mind before then!
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The Normal Distribution

The Normal Distribution

— In the last lecture, we started to learn about the normal distribution. This
distribution has many nice properties, some of which we already discussed.

— One consequence of those properties is what is called “the empirical rule”.

The summary of the rule can be seen in the wikipedia image below.

99.7% of the data are within

3 standard deviations of the mean
5% withan
2 standard deviations
8% within
+— 1 standard —*
derviation
= 3 = 2o =T " ot u+da B g
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The Normal Distribution

The Normal Distribution Cont'd

— We also learned how to find areas under the standard normal distribution
(that is, with mean u = 0 and variance 0> = 1) using the standard normal
cumulative table.

— A region under a normal curve corresponds to a proportion of the population.
This is because a normal curve can be viewed as the limit of a series of
histograms, in which the sample gets large while the bin-size goes to zero.

— Thus if a student's arrival time in minutes for class is represented by a
standard normal, then half the time the student arrives before class starts, and
approximately 68% of the time the student is within+1 minute of the start of
class.
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The Normal Distribution

The Normal Distribution Cont'd

— We now show how to convert a question about an arbitrary normal
distribution into an equivalent question about the standard normal, and
vice-versa. Thus we can use the table to answer questions about all normal
distributions, not just the standard normal.

— Let X be a random variable from a normal population with mean u and
variance 0. We write this as X ~ N(p,0?). Some textbooks write
X ~ N(u, o) using the standard deviation instead.

) . X — .
— Define a new random variable Z = Ty' Then it turns out that

Z ~ N(0,1). This transformation from X to Z is called the z-transformation.
Well this is great! To find probabilities under any normal distribution, we simply
have to do the z-transformation to use the standard normal table and we love
that don’t we?

— To go the other way, we convert the standard normal value to an arbitrary
normal distribution by solving for X. So that X = u + Zo.
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The Normal Distribution

The Normal Distribution Cont'd

Example 4: Reggie Jackson, the famous baseball
player, has an 1Q of 140. What percentage of
people are smarter?

Assume that 1Qs are normally distributed with
mean 100 and standard deviation 16.

We want to find IP(X > 140) where X ~ N(100,162). That is, we want the
area under the normal distribution for IQ that lies to the right of 140. By the
z-transformation, this is equivalent to the area under the standard normal
distribution that lies to the right of

_ X—pu _ 140—100
o 16 -

z 2.5.

From the normal table, the area above 2.5 is 0.006. Thus about 0.6% of people
are smarter than Reggie Jackson.
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The Normal Distribution

The Normal Distribution Cont'd

— Now we go the other way. We find the X value that corresponds to a given
percentage.

— Example 5: To join Mensa one must be in the top 2% of the IQ distribution.
What score do you need?

— In the body of the normal table, look up 2%, or 0.02. That gives the z-value
of approximately 2.05.

Now we use the inverse z-transformation:
X =u+ Zo =100+ (2.05)(16) = 132.8.

One needs an IQ score of at least 132.8 (i.e., 133) to join.
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The Normal Distribution

The Normal Distribution Cont'd

— Example 6 (To be done in class — D.S. Chapter 5 Exercises, Question 2):
Suppose that X has the normal distribution for which the mean is 1 and
variance is 4. Find the value of each of the probabilities:

(a)P(X<3) ()PX>5 (P(X=1) (ePR2<X<5)
() P(-1< X <05) (fP(X|<2) (g)P(-1<-2X+3<8)
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The Normal Distribution

The Normal Approximation to the Binomial

— A perfect normal distribution describes data that can take any possible value
— negatives, fractions, irrationals, etc. But often data can only take
non-negative integer values.

— In a class of ten students, each tosses a fair coin to decide whether to attend

class. So class attendance is a random variable that has the Bin(10, 0.5)

distribution. Its mean is np = 5 and the standard standard deviation is
nxpx*(1—p)=1581

— We can use the normal distribution to estimate the approximate probability
that, say, 3 or fewer students will attend tomorrow’s lecture. But because only
integers are possible, we can improve the accuracy of the normal approximation
by using the continuity correction.
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The Normal Distribution

The Normal Approximation to the Binomial Cont'd

— We approximate the binomial by a normal distribution with the same mean
and standard deviation.
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— The bad approximation uses the z-transformation
z=(3—-5)/1.581 = —1.265, and finds the area under the N(0,1) curve that
lies below -1.265 as 0.1020.
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The Normal Distribution

The Normal Approximation to the Binomial Cont'd

— The good way handles the area between 3 and 4 appropriately, to take
account of the fact that the histogram bar is centered at 3 and we want to
include the area up to 3.5 We use the z-transformation
z=(3.5-15)/1.581 = —0.949, and find the probability as 0.1711.

— The normal approximation to the binomial is helpful when n is very large. For
example, suppose we wanted to find the probability that more than 20,000 of
the 228,330 residents of Durham are unemployed, when the unemployment rate
in NC is 10.1%. To use the binomial, we would have to calculate

20'20?0 (228, 330

X

> (0.101)*(1 — 0.101)228:300—x
x=0

This is intractable, but the normal approximation is not.

— The normal approximation is accurate when np > 10 and n(1 — p) > 10.
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The Multinomial Distribution

The Multinomial Distribution

— Remember that the Binomial distribution describes a random variable that
represents success (or failure) based on n independent trials of an experiments
with two outcomes, where the probability of success is the same for each trial.
Our toy examples have been tossing a coin n times and rolling a die n times.

— An extension to the binomial distribution which allows for three or more
outcomes (k outcomes) for each trial, where the probability of each outcome is
the same for each trial is called the Multinomial Distribution.

— A random variable (vector) X = (X1, ..., Xx) has the multinomial
distribution with parameters n and p = (p1, ..., px) if its pmf is given by

f(X)_]P(X_X)_(m n. Xk)Pfl,...,pﬁk for x1+...+xk=n

n n! . . . ..
where — ———— s called the multinomial coefficient.
X1, y Xk X1!X2!...Xk!
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The Multinomial Distribution

The Multinomial Distribution Cont'd

Example 7 (To be done in class): Suppose that for a single roll of a loaded die
we can observe one with probability 0.25, two or three with probability 0.1 each,
four or five with probability 0.2 each and six with probability 0.15. What is the
probability that in 15 independent rolls, we will observed one four times, two
thrice, three once, four once, five four times and six twice.

Let X = (X1, Xo, X3, X4, X5, Xg) be the observed combination for the die.
Then p = (0.25,0.1,0.1,0.2,0.2,0.15) and

P[X = (4,3,1,1,42)] = <Xl n Xk>p;<1’... P

15 40 130 110 ol H4n 152
= 2 .1°0.170.270.270.1
<4,3,1,1,4,2)0 570.1°0.1-0.270.2%0.15

_ 15!
T 413111114121
= 0.0005

0.25%0.1%0.110.210.2%0.152
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The Multinomial Distribution

The Multinomial Distribution Cont'd

A few important points:
@ The vector of probabilities p should sum to 1.

@ Any X; € (Xy,...,Xk) has a binomial distribution with parameters n and
pi. This is why treating the die roll as a binomial when we only care
about one of the sides works!

© Collapsing the k different outcomes to two outcomes gets you back to a

binomial distribution as well. If X = (Xi,..., Xk) has a multinomial
distribution with parameters n and p = (p1, ..., px) and | < k where
i, ..., i are distinct elements of the set {1,..., k}, then

Y = X, + -+ Xj, has a binomial distribution with parameters n and
Piy +---+ Pi,
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Recap

We discussed the following:
o Calculating expectations.

@ The normal distribution and using it as an approximation for the binomial
distribution.

@ The multinomial distribution.
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