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DEs and OSs

Introduction to DEs and OSs

DE - Designed Experiments

OS - Observational Study

The usual purpose of both kinds of research is to draw conclusions about
causation. For example:

— Does smoking cause cancer?
— Does premarital sex cause higher divorce rates?
— Does college partying cause low grades?

A double-blind, randomized, controlled experiment gives more accurate
conclusions than an observational study.
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Designed Experiments

Double-Blind, Controlled and Randomized

The gold standard for a statistical study is the double-blind, randomized,
controlled experiment.

A study is double-blind if neither the subjects nor the scientists know who
is assigned to which group until after the data are collected. This prevents
subjects in different groups from behaving in different ways; prevents
scientists from introducing any unconscious bias into the data collection
process.

A study is controlled if one group receives the treatment and another
group does not. (In medicine, that group usually gets either a placebo, or
standard medical care, or both.)
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Designed Experiments

Double-Blind, Controlled and Randomized (Cont’d)

A study is randomized if the control group and the treatment group are
chosen at random.

Without randomization, the groups may differ in a systematic way. For
example, surgeons used to assign only the healthiest patients to receive an
experimental new surgical treatment, since those patients could best
withstand the invasive procedure. But the outcomes for those patients are
not a reliable forecast for how normal patients would respond.
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Designed Experiments

Double-Blind, Controlled and Randomized (Cont’d)

Historical controls do not give a randomized experiment, which is one
reason their use is problematic. The FDA is very reluctant to approve
drugs in which all patients in the trial receive the drug, while the control
group are patients who were treated before the drug was invented. One
concern is that the standard of basic care constantly improves, so the drug
may appear effective when, in fact, the only difference is that current
patients get, say, better nursing care.
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Designed Experiments

Double-Blind, Controlled and Randomized (Cont’d)

Studies of the portacaval shunt, a treatment for cirrhosis of the liver, is
telling. Physicians reported 50 experiments on the procedure in the
medical literature (most of these experiments were small, involving only
about ten or so patients).

Degree of Enthusiasm
High Moderate Low

Design
No Control 24 7 1
Control, Not Randomized 10 3 2
Randomized, Controlled 0 1 3
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Observational Studies

Confounding Factors

In an observational study, the researcher does not get to determine who
receives the treatment. For example, people who smoke get lung cancer at
a higher rate than those who do not smoke. Does smoking cause lung
cancer?

The tobacco lobby used to say no, arguing that: there might be a gene
that predisposes people to both enjoy smoking and get cancer; people who
like to smoke may tend to follow unhealthy lifestyles (e.g., alcohol use),
and that may be the real cause of lung cancer; no randomized, controlled,
double-blind experiment (on humans) has shown causation.
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Observational Studies

Confounding Factors (Cont’d)

Obviously, it would be ethically problematic to do a randomized controlled
experiment (one would have to assign 14 year-olds at random to smoke
heavily for the rest of their lives). And it would be hard to make this
double-blind—people know if they smoke.

But animal studies strongly indicate that smoking causes lung cancer in
mammals and birds.

The other two arguments from the tobacco lobby carry more weight. The
differences between lung cancer rates in the smokers and non-smokers may
be due to smoking, or they may be due to a confounding factor or variable.

In this case, tobacco lobbies suggested two possible confounding factors:
genes and lifestyle.
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Observational Studies

Confounding Factors (Cont’d)

A confounding factor is associated with both:

— outcome

— group membership

For example, one might argue that lung cancer is caused by matches, not
tobacco.

Similarly, one might argue that cholesterol does not cause heart disease,
but rather is a result of poor circulation or breakdown of heart muscle
tissue—so it is associated, but not causal.
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Observational Studies

Confounding Factors (Cont’d)

One way to try to handle confounding is to make subgroup comparisons
that control for possible confounding effects. For example, one could
compare the lung cancer rates for smokers who use matches against
smokers who use lighters.

Do seatbelts save lives?

Seatbelt studies are usually observational (why?). One compares the
fatality rates in accidents in which seatbelts were worn to the fatality rate
in accidents without seatbelts.

But one has to worry about confounding factors. For example,

— People who don’t wear seatbelts may drive more recklessly.

— People who don’t wear seatbelts may prefer cars that are not designed with
safety in mind.
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Observational Studies

Confounding Factors (Cont’d)

Some researchers try to control for this by comparing the fatality rates
among seatbelt wearers and non-wearers in similar cars, or cars that are
thought to have been traveling at the same speed. But this is awkward to
do and invites criticism.

In order to control for a confounding factor, one has to guess what it is.
But that can be hard and you are never sure that you have thought of
everything.
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Observational Studies

Confounding Factors (Cont’d)

In contrast, with a randomized design, the random assignment of people to
the treatment and control groups ensures that there is almost no chance of
a systematic difference between the groups. You are unlikely to get most of
the safe drivers in one group and the reckless in the other, or most of the
people with good genes for lung cancer in one group and all those with bad
genes in the other.

Health experts say that exercise increases one’s lifespan. What kinds of
data might they have, and what would be the statistical issues regarding
the validity of their claim?
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Observational Studies

Weighted Averages

Subgroup analysis is one way to control for a potential confounding factor.
Here one studies each group defined by the confounder separately. Another
way to control for a confounder is to use a weighted average.

In the 1960s, the University of California at Berkeley was embarrassed. It
was rejecting a larger proportion of women than men, and applicants
claimed there was gender bias. But when the Dean asked each department
to report their admission rates separately, it turned out that each
department accepted a larger proportion of women than men. (The Dean
was doing a subgroup analysis without realizing it.)
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Observational Studies

Weighted Averages (Cont’d)

This apparent reversal of a pattern is sometimes called Simpson’s Paradox.
It happens when there is a third confounding variable (major) which affects
the other two (admission and gender).

The Dean asked Professor Betty Scott to study the problem. She showed
that women tended to apply to the majors that were most selective,
whereas the men applied to majors that were less selective. So overall, the
women had higher rejection rates.
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Observational Studies

Weighted Averages (Cont’d)

To put such comparisons on a fair footing, she calculated the weighted
average admission rates for women and men, where the weights are
determined by the proportion of people applying to each of the different
majors. This controls for the confounding variable.

To see how the weighted average works, we focus on just two majors.
Assume major A accepts 80% of all applicants, but Major B accepts just
10%. Suppose 100 men and 200 women apply. Consider two scenarios:
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Observational Studies

Weighted Averages (Cont’d)

Scenario 1: Half the men and half the women apply to A, the rest apply
to B.

Scenario 2: 90 men apply to A, 10 to B; but 180 women apply to B, 20
to A.

In the first case, major is not a confounding variable. Men and women
show the same major preferences. (Note: They do not have to apply in
50-50 ratios—it would still not be a confounder if both genders applied in
25-75 ratios, for example.)

In the second case, major is a confounder. Men prefer A, but women prefer
B.
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Observational Studies

Weighted Averages (Cont’d)

In Scenario 1, the raw number of men who are accepted is

.8 ∗ 50 + .1 ∗ 50 = 45

and for women the percentage is the same: (80+10)/200 is 45%.

In Scenario 2, the raw number of men who are accepted is

.8 ∗ 90 + .1 ∗ 10 = 73

or 73%. And the raw number of women accepted is

.1 ∗ 180 + .8 ∗ 20 = 34

so their acceptance rate is 34/200 or 17%. This looks like gender bias, but
actually it is not—the admission policy is completely gender blind.
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Observational Studies

Weighted Averages (Cont’d)

To make a fair comparison, weight the acceptance rates for men in each
major by the fraction of people applying to that major:

90 + 20

300
∗ 72

90
+

10 + 180

300
∗ 1

10
= .357

and the weighted average proportion of women accepted is

90 + 20

300
∗ 16

20
+

10 + 180

300
∗ 18

180
= .357

The weighted average shows that the acceptance rates for men and
women, controlling for major, are equal.
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Observational Studies

Weighted Averages (Cont’d)

The general formula for finding the weighted average correction for the
acceptance rate of men is:

wtd avg = ∑
i

(prop. of people applying to major i) ∗

(acceptance rate for men at major i)
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Nonparametric Regression

Recap

Recall that the multiple linear regression model is

yi = β0 + β1xi1 + . . . + βpxip + εi

where IE[εi ] = 0, V[εi ] = σ2, and the εi ’s are independent.

The model is useful because:

it is interpretable—the effect of each explanatory variable is captured by a
single coefficient

theory supports inference and prediction is easy

simple interactions and transformations are easy (how?)

dummy variables allow use of categorical information

computation is fast.
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Nonparametric Regression

Nonparametric Regression

We extended the multiple linear regression model to nonlinear regression, in
which we fit a model of the form:

yi = β0 + β1g1(xi2) + . . . + βpgp(xip) + εi

where the gj ’s are known transformations of the data, such as the log or 1/x ,

and, as before, IE[εi ] = 0, V[εi ] = σ2, and the εi ’s are independent.

This model can be further extended to nonparametric regression, in which case
one does not now the functions g1, . . . , gp but instead must estimate these by
smoothing the data.

In the real applications, the linear regression model is usually only a locally
correct approximation. And it is rare that one has a strong theoretical model
that prescribes specific nonlinear transformations. Thus nonparametric
regression is a practical tool in many cases.
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Multicollinearity

Curse of Dimensionality

Regression becomes much harder as the number of explanatory variables
increases. This is called the Curse of Dimensionality (COD). The term was
coined by Richard Bellman in the context of approximation theory.

The COD applies to all multivariate regressions that do not to impose strong
modeling assumptions—especially the nonparametric regressions, but also those
in which one tests whether a specific variable or transformed variable should be
included in the model.

In terms of the sample size n and dimension p, the COD has three nearly
equivalent descriptions:

For fixed n, as p increases, the data become sparse.

As p increases, the number of possible models explodes.

For large p, most datasets are multicollinear.
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Multicollinearity

Curse of Dimensionality (Cont’d)

To explain the model explosion aspect, suppose we restrict attention to just
linear models of degree 2 or fewer. For p = 1 these are:

IE[Y ] = β0 IE[Y ] = β1x1 IE[Y ] = β2x
2
1

IE[Y ] = β0 + β1x1 IE[Y ] = β0 + β2x
2
1 IE[Y ] = β1x1 + β2x

2
1

IE[Y ] = β0 + β1x1 + β2x
2
1

For p = 2 this set is extended to include expressions with the terms α1x2, α2x
2
2 ,

and γ12x1x2. For general p, combinatorics shows that the number of possible
models is

2
1+2p+

(
p
2

)
− 1.

This increases superexponentially in p, and there is not enough sample to
enable the data to discriminate among these models.
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Multicollinearity

Curse of Dimensionality (Cont’d)

For the multicollinearity issue, we note that multicollinearity occurs when two
or more of the explanatory values are highly correlated. This implies that the
predictive value of the fitted model breaks down quickly as one moves away
from the subspace in which the data concentrate.

We shall agree that multicollinearity occurs whenever the absolute value of the
correlation between two of the explanatory variables exceeds 0.9. But this is a
judgment call, and one can have multicollinearity that arises in more complex
ways.

For large p with finite n, it is almost certain that two explanatory variables will
have high correlation, just by chance.
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Variable Selection

Variable Selection

One wants to select a multiple regression model that only includes useful
variables. Some methods are:

Forward Selection. One starts with no variables in the model, and
sequentially adds the one that best explains the current residuals (or the
raw data, at the initial step). One stops when none of the remaining
variables provide significant explanation.

Backwards Elimination. Start with all the variables in the model, and
sequentially removes the variable that explains the least, until a t-test
shows that no further variables should be removed.

Stepwise Regression. Alternate use of forward selection and backwards
elimination.

None of these is bulletproof.
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Cross-Validation

Cross-Validation

To assess model fit in complex, computer-intensive situations, the ideal strategy
is to hold out a random portion of the data, fit a model to the rest, then use
the fitted model to predict the response values from the values of the
explanatory variables in the hold-out sample.

This allows a straightforward estimate of the error in prediction using
regression. But we usually need to compare fits among many models. If the
same hold-out sample is re-used, then the comparisons are not independent and
(worse) the model selection process will tend to choose a model the overfits the
hold-out sample, causing spurious optimism.
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Cross-Validation

Cross-Validation (Cont’d)

Cross-validation is a procedure that balances the need to use data to select a
model and the need to use data to assess prediction.

Specifically, v -fold cross-validation is as follows:

randomly divide the sample into v portions;

for i = 1, . . . , v , hold out portion i and fit the model from the rest of the
data;

for i = 1, . . . , v , use the fitted model to predict the hold-out sample;

average the predictive mean squared error (PMSE) over the v different fits.

One repeats these steps (including the random division of the sample!) each
time a new model is assessed.

The choice of v requires judgment. Often v = 10.
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