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Introduction

Introduction

– We have already talked about random variables, their distributions, density
(or mass) functions and expectations.

– Today we will extend those concepts to two or more variables jointly. We will
cover joint distributions for bivariate distributions as well as conditional
densities, independence, covariance and correlation.
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Joint Distributions

Joint Distributions

In general, a joint probability density (or mass) function gives the probability
distribution for more than one random variable (i.e., a random vector). These
joint distributions may be discrete, continuous, or mixed.

We will focus on the continuous case with two random variables in defining the
different concepts but all the definitions extend to the discrete case.
First, ∫ ∞

−∞

∫ ∞

−∞
f (x , y) dxdy = 1

where f (x , y) is the non-negative joint density function.

That is, in order to be a joint density function, f (x , y) must integrate to 1.
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Joint Distributions

Joint Distributions Cont’d

So that,

IP[a ≤ X ≤ b and c ≤ Y ≤ d ] =
∫ d

c

∫ b

a
f (x , y) dxdy

where f (x , y) is the joint density function.

Also, the joint cumulative distribution function (cdf) is:

F (x , y) = IP[X ≤ x and Y ≤ y ] =
∫ x

−∞

∫ y

−∞
f (x , y) dxdy
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Joint Distributions

Example

Example 1: You compare the share price of two stocks, say Apple, Inc. and
Alphabet Inc. Apple share values (X ) cannot exceed $6.00, and Alphabet
shares (Y ) cannot exceed $9.00.

Random market forces cause the values to vary. Assume that on a given day,
the share prices in X and Y have joint probability density function

f (x , y) =

{
1

4374xy
2 for 0 ≤ x ≤ 6, 0 ≤ y ≤ 9
0 otherwise.

Qualitatively, this joint density function puts less probability on extremely low
values, which seems reasonable. It also suggests that the probability of large
values for Alphabet increases faster than the probability of large values for
Apple, which may also be plausible.
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Joint Distributions

Marginal Densities

Is the function in our stock value example a joint density? Yes, since:∫ 9

0

∫ 6

0

1

4374
xy2 dxdy =

1

4374

∫ 9

0
18y2 dy

=
1

4374
(18 ∗ 243) = 1.

The marginal densities of X and Y are, respectively,

f1(x) =
∫ ∞

−∞
f (x , y) dy for −∞ < x < ∞

f2(y) =
∫ ∞

−∞
f (x , y) dx for −∞ < y < ∞

The marginals give us the density for just the X random variable or just the Y
random variable, ignoring the other.
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Joint Distributions

Example

Example 1 Cont’d: If I just wanted to know the marginal density function for
the value of an Apple share, it would be

f1(x) =
∫ ∞

−∞
f (x , y) dy for −∞ < x < ∞

=
1

4374

∫ 9

0
xy2 dy for 0 ≤ x ≤ 6

=
1

18
x for 0 ≤ x ≤ 6.

Similarly, if I wanted to know just the probability density function for the
Alphabet share, a similar integration would give

f2(y) =
∫ ∞

−∞
f (x , y) dx for −∞ < x < ∞

=
1

243
y2 for 0 ≤ y ≤ 9.
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Joint Distributions

Independence and Conditional Densities

Two random variables are independent if and only if

f (x , y) = f1(x) ∗ f2(y).

In our example, are the the two share prices independent?

Yes, since (1/243)y2 ∗ (1/18)x = (1/4374)xy2.

The conditional density of X given that Y = y is

g1(x |y) =
f (x , y)

f2(y)
.

The conditional density g2(y |x) for Y given X = x is similarly defined.

Instructor: Olanrewaju Michael Akande (Department of Statistical Science, Duke University)STA 111: Probability & Statistical Inference 9 / 16



STA 111: Probability & Statistical Inference

Joint Distributions

Example

Example 1 Cont’d: For our example, what is the conditional density for the
Apple stock value if an Alphabet share costs $5.00?

g1(x |y = 5) =
f (x , 5)

f2(5)

=

(
52

4374x
)

(
52
243

)
=

1

18
x for 0 ≤ x ≤ 6.

Since the random variables are independent, knowing the value of Alphabet
does not change our probability for the value of Apple.

Note: As usual, we use X and Y to denote random variables, and x and y to
denote values they may take. Above, we observed that the outcome for Y was
$5.00 and sought the corresponding density for X .
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Joint Distributions

Covariance

The expectation of a function h(X ,Y ) is

IE[h(X ,Y )] =
∫ ∞

−∞

∫ ∞

−∞
h(x , y)f (x , y) dxdy .

For example, the expected value of the product of X and Y is

IE[XY ] =
∫ ∞

−∞

∫ ∞

−∞
xyf (x , y) dxdy .

A particularly useful function is h(X ,Y ) = (X − µX )(Y − µY ). Its expectation
is called the covariance. One can show that the covariance reduces to

Cov(X ,Y ) = IE[XY ]− µX ∗ µY .
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Joint Distributions

Correlation

When there are more than two random variables, e.g., there are X , Y , and Z ,
then one can calculate the covariance matrix whose entries are all possible pairs
of covariances.

The covariance is important because it allows us to calculate the correlation
between X and Y :

Corr(X ,Y ) =
Cov(X ,Y )

σX ∗ σY
.

Recall that σX is the standard deviation of X , or the square-root of
IE[X 2]− µ2

X .

Correlation is a measure of strength of association/relationship between two
random variables. See graph on the board.
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Joint Distributions

Correlation Cont’d

Some useful facts about the correlation and covariance:

If X and Y are independent, then Corr(X ,Y ) = 0.

The converse fails: if Corr(X ,Y ) = 0, then X and Y may be dependent.

−1 ≤ Corr(X ,Y ) ≤ 1.

Cov(aX , b) = 0.

Cov(aX + b, cY + d) = acCov(X ,Y ).

Corr(aX + b, cY + d) = Corr(X ,Y ).

The Corr(X ,Y ) = ±1 if and only if Y = aX + b for some a 6= 0.

The book covers this material in Chapter 4, and treats both continuous and
discrete distributions. As we have seen before, that simply means that
summations replace integrals in the formulæ shown here.
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Joint Distributions

A Discrete Example

Example 2 (To be done in class): Consider the joint probability mass function
for bivariate discrete random variables defined by the following table:

x=1 x=2 x=3
y=0 0 0.09 0.15
y=4 0.15 0.04 0.25
y=5 0.07 0.05 c

1 What is the value of c?

2 What is the expected value of the product XY ?

3 What is IP(X = 1|y = 4)?

4 Are X and Y independent?

5 What is the expected value of X? What is the expected value of Y?

6 What is the covariance between X and Y?

7 What is the correlation between X and Y?
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Joint Distributions

Another Example

Example 3 (To be done in class): Suppose f (x , y) = 6x for x + y ≤ 1 with
both x and y restricted to be between 0 and 1.

Hint: When working with bivariate densities, it is always a good idea to draw
the support.

1 What is the marginal density of X?

2 What is the expected value of X?

3 What is the marginal density of Y ?

4 What is the expected value of Y ?

5 Are X and Y independent?

6 What are the conditional densities?

7 What is the correlation between X and Y?
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Recap

Recap

We discussed the following:

Joint Distributions

Covariance

Correlation
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